

PET/MRI Study

1 Center for Amyloidosis, Knight Cardiovascular and Cancer Institutes, and Molecular Imaging and Therapies Section, Oregon Health & Science University, Portland, OR, USA

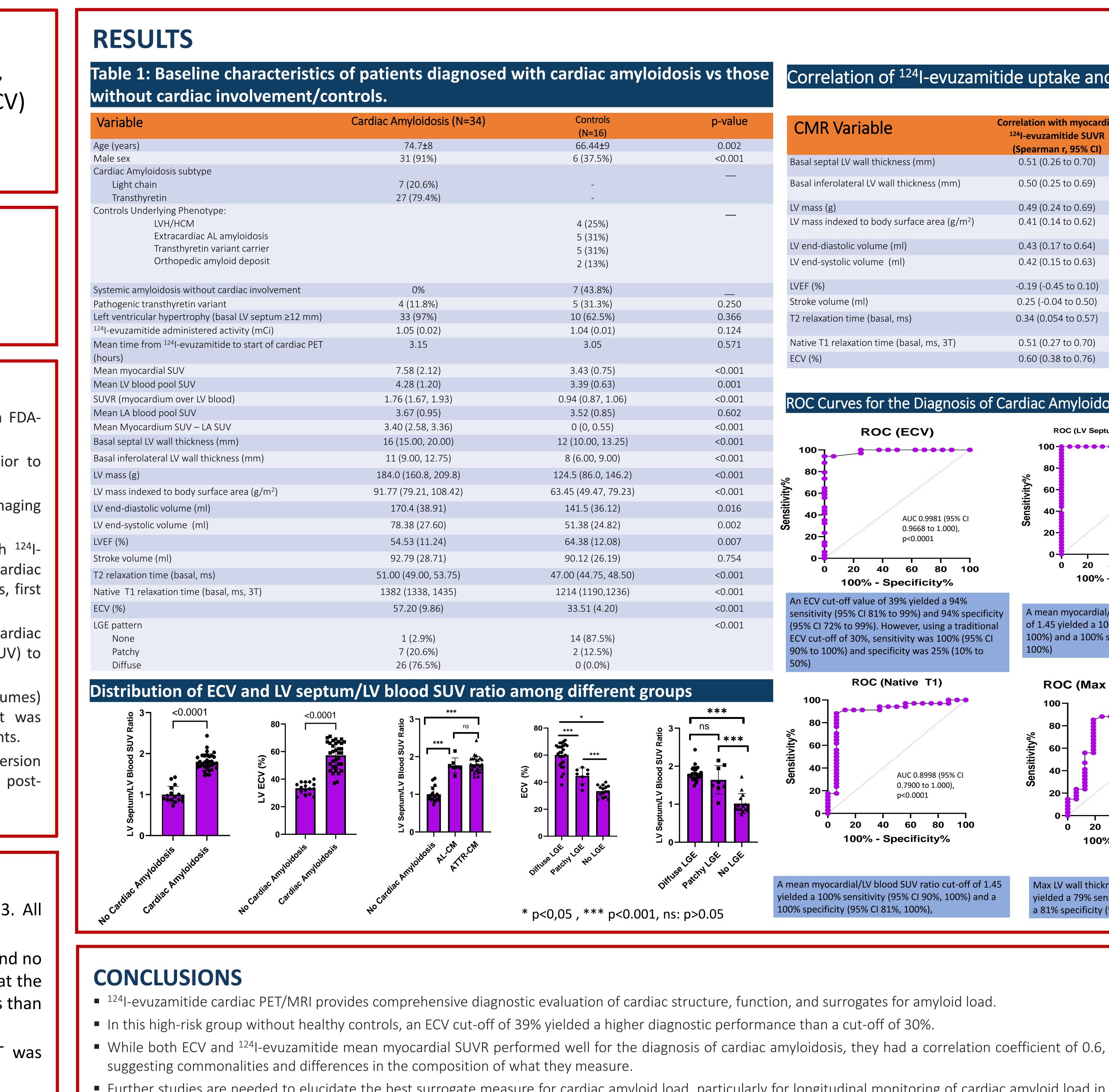
BACKGROUND

- CMR allows for assessment of cardiac structure, function, and surrogates of amyloid load (i.e. ECV)
- ¹²⁴I-evuzamitide is a novel pan-amyloid PET radiotracer

OBJECTIVE

We investigated the relationship between ¹²⁴I-evuzamitide myocardial uptake, ECV, and other measures of cardiac structure and function.

METHODS


- The study was approved by the OHSU IRB and conducted under an FDAapproved IND.
- Cardiac amyloidosis was suspected or diagnosed in all patients prior to enrollment.
- Patients were diagnosed by standard clinical, laboratory, biopsy, and imaging criteria according to the guidelines.
- All patients underwent hybrid cardiac PET/MRI (GE Signa, 3T) with ¹²⁴Ievuzamitide (mean administered activity 1.04±0.02 mCi, 30 minute cardiac acquisition). All patients received potassium iodide 130 mg for 3 days, first dose at least 30 minutes prior to ¹²⁴I-evuzamitide administration.
- PET Images were analyzed qualitatively and quantitatively for cardiac involvement. Ratio of mean LV septum standardized uptake value (SUV) to mean LV blood pool SUV was calculated.
- On cardiac MRI, cardiac structure (LV wall thickness, mass, and volumes) were analyzed. T1 and T2 mapping were performed. Hematocrit was measured and gadolinium contrast agent was administered in all patients.
- T1 mapping was performed using identical modified Look-Locker inversion recovery (MOLLI) sequences pre-gadolinium and at 14-minutes postgadolinium to quantify extracellular volume fraction (ECV).

RESULTS

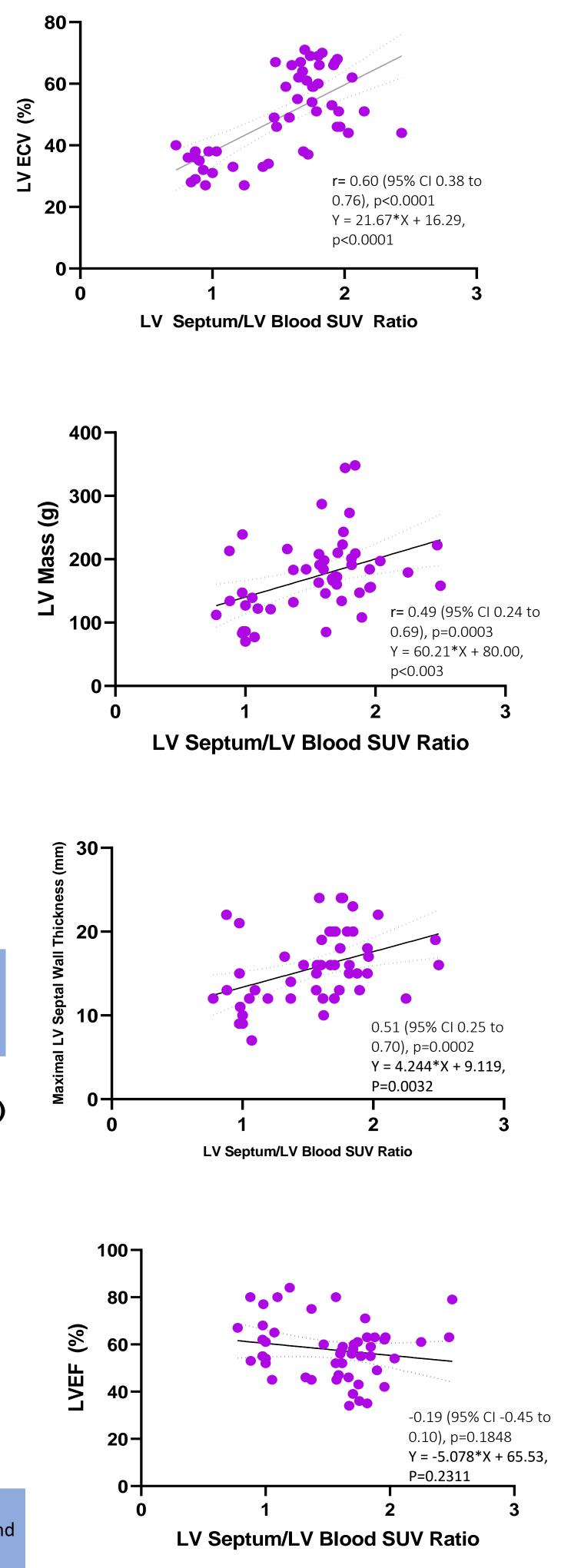
- 50 patients were enrolled from January through August 2023. All subjects completed the study protocol.
- ¹²⁴I-evuzamitide was safe without any serious adverse events and no tracer-related adverse events. There was a mild AE of redness at the site of peripheral line in one subject and the AE resolved in less than 24 hours.
- Time from ¹²⁴I-evuzamitide injection to start of cardiac PET was 4.0±0.6 hours.
- The baseline characteristics are shown in Table 1.

Relationship Between Myocardial ¹²⁴I-evuzamitide Uptake and Cardiac Structure and Function: A Cardiac

Morris Kim¹, Jessica Cardin¹, Derrick Gillan¹, Eva Medvedova¹, Nadine Mallak¹, Ahmad Masri¹

response to therapy.

Controls	p-value
(N=16)	0.002
66.44±9 6 (37.5%)	0.002 <0.001
0 (37.370)	<0.001
-	
-	
4 (25%) 5 (21%)	
5 (31%) 5 (31%)	
2 (13%)	
2 (10,0)	
7 (43.8%)	
5 (31.3%)	0.250
10 (62.5%)	0.366
1.04 (0.01)	0.124
3.05	0.571
3.43 (0.75)	<0.001
3.39 (0.63)	0.001
0.94 (0.87, 1.06)	<0.001
3.52 (0.85)	0.602
0 (0 <i>,</i> 0.55)	<0.001
12 (10.00, 13.25)	<0.001
8 (6.00, 9.00)	<0.001
124.5 (86.0, 146.2)	<0.001
63.45 (49.47, 79.23)	<0.001
141.5 (36.12)	0.016
51.38 (24.82)	0.002
64.38 (12.08)	0.007
90.12 (26.19)	0.754
47.00 (44.75, 48.50)	<0.001
1214 (1190,1236)	<0.001
33.51 (4.20)	<0.001
14 (87.5%) 2 (12.5%)	<0.001


Correlation of ¹²⁴I-evuzamitide uptake and measures of cardiac structure and function on CMR

CMR Variable	Correlation with myocardial ¹²⁴ I-evuzamitide SUVR (Spearman r, 95% CI)	p-value
Basal septal LV wall thickness (mm)	0.51 (0.26 to 0.70)	0.0002
Basal inferolateral LV wall thickness (mm)	0.50 (0.25 to 0.69)	0.0002
LV mass (g)	0.49 (0.24 to 0.69)	0.0003
LV mass indexed to body surface area (g/m ²)	0.41 (0.14 to 0.62)	0.0003
LV end-diastolic volume (ml)	0.43 (0.17 to 0.64)	0.0017
LV end-systolic volume (ml)	0.42 (0.15 to 0.63)	0.0025
LVEF (%)	-0.19 (-0.45 to 0.10)	0.1848
Stroke volume (ml)	0.25 (-0.04 to 0.50)	0.0846
T2 relaxation time (basal, ms)	0.34 (0.054 to 0.57)	0.0175
Native T1 relaxation time (basal, ms, 3T)	0.51 (0.27 to 0.70)	0.0001
ECV (%)	0.60 (0.38 to 0.76)	<0.0001

ROC Curves for the Diagnosis of Cardiac Amyloidosis

• Further studies are needed to elucidate the best surrogate measure for cardiac amyloid load, particularly for longitudinal monitoring of cardiac amyloid load in

DISCLOSURES

FUNDING: ACCESS TO THE DATA WAS FUNDED BY CYTOKINETICS. STATISTICAL PLANNING AND ANALYSIS WERE PERFORMED INDEPENDENTLY AND SPONSORED BY **OHSU**

COL AHMAD MASRI REPORTS RESEARCH GRANTS FROM PFIZER. IONIS, ATTRALUS, AND CYTOKINETICS AND FEES FROM CYTOKINETICS, BMS, EIDOS/BRIDGEBIO, PFIZER, IONIS, LEXICON, ATTRALUS, ALNYLAM, HAYA, ALEXION, AKROS, PROTHENA, BIOMARIN, ASTRAZENECA, AND TENAYA. OTHER CO-AUTHORS HAVE NO DISCLOSURES.