

XIX INTERNATIONAL SYMPOSIUM ON AMYLOIDOSIS

MAY 26-30, 2024 – ROCHESTER, MN

COURSE DIRECTORS:

Angela Dispenzieri, M.D. – Mayo Clinic Morie A. Gertz, M.D. – Mayo Clinic Martha Grogan, M.D. – Mayo Clinic Dr. Stefan Schönland, Heidelberg University Hospital, Germany, ISA President 2022-2024

SPONSORED BY THE INTERNATIONAL SOCIETY OF AMYLOIDOSIS (ISA)

MORRIS KIM, MD Cardiovascular Disease Fellow

Derrick Gillan, Jessica Cardin, Eva Medvedova, Nadine Mallak, Ahmad Masri

Oregon Health & Science University (OHSU)

Portland, OR

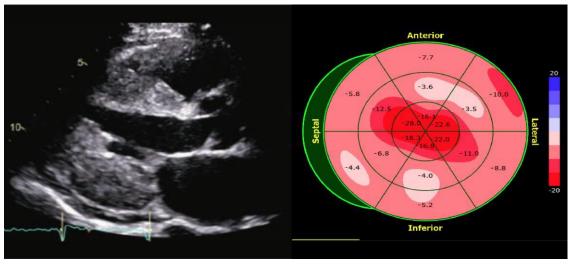
Unauthorized duplication, distribution or exhibition of this program is an infringement of United States and International copyright laws.

Title 17, U.S. Copyright Code

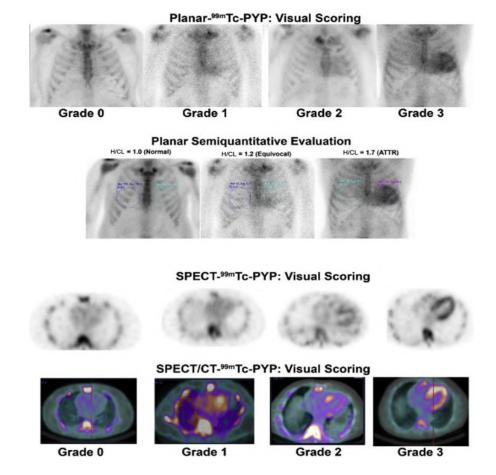
DISCLOSURE OF RELEVANT FINANCIAL RELATIONSHIP(S) WITH INDUSTRY

Nothing to disclose

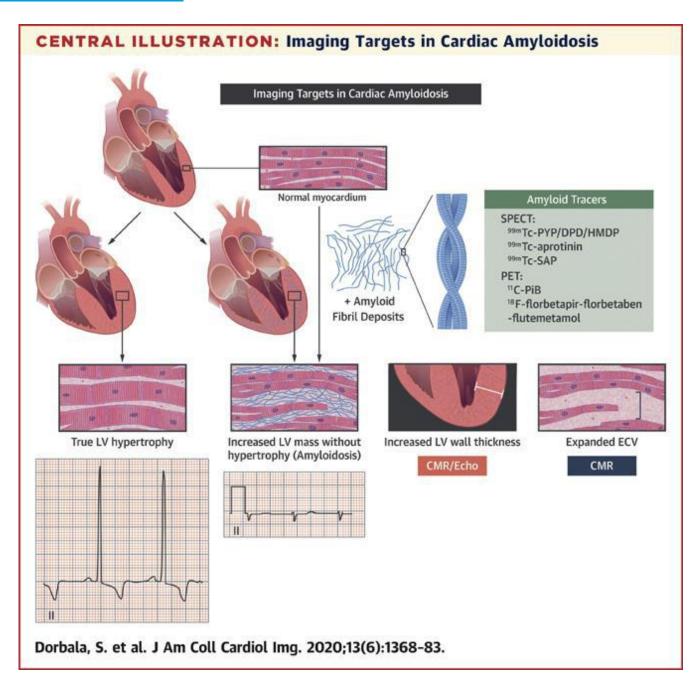
REFERENCES TO OFF-LABEL USAGE(S) OF PHARMACEUTICALS OR INSTRUMENTS


• Nothing to disclose

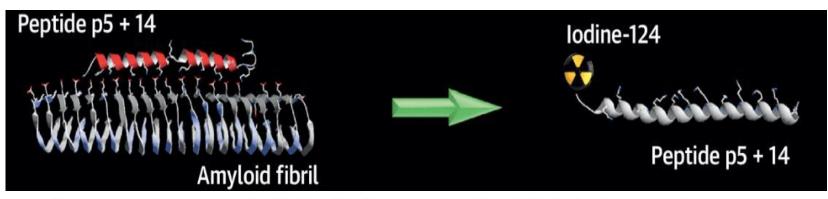
LEARNING OBJECTIVES


- Review the current paradigm of non-invasive diagnosis of cardiac and systemic amyloidosis
- Explore the feasibility of utilizing ¹²⁴Ievuzamitide (AT-01), a novel pan-amyloid radiotracer, in non-invasive diagnosis of systemic amyloidosis

NON-INVASIVE IMAGING OF AMYLOIDOSIS REVIEW OF THE CURRENT OPTIONS


- Echocardiogram with strain imaging
- ^{99m}Tc-pyrophosphate (PYP) SPECT/CT
- Cardiac magnetic resonance imaging (CMR): gold standard imaging modality

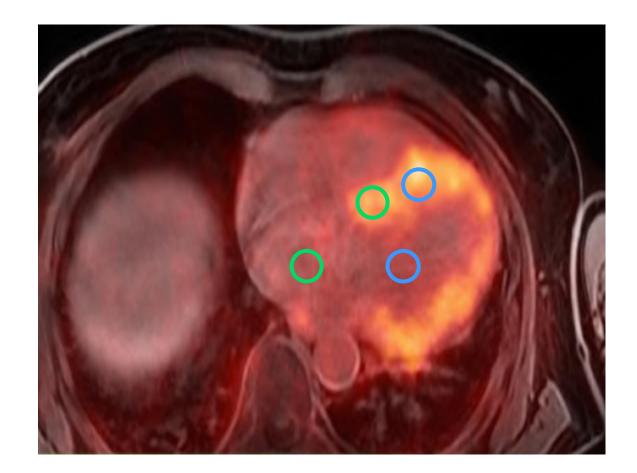
Wali E, Gruca M, Singulane C, Cotella J, Guile B, Johnson R, Mor-Avi V, Addetia K, Lang RM. How Often Does Apical Sparing of Longitudinal Strain Indicate the Presence of Cardiac Amyloidosis? Am J Cardiol. 2023 Sep 1;202:12-16. doi: 10.1016/j.amjcard.2023.06.022. Epub 2023 Jul 4. PMID: 37413701.


Hanna M, Ruberg FL, Maurer MS, Dispenzieri A, Dorbala S, Falk RH, Hoffman J, Jaber W, Soman P, Witteles RM, Grogan M. Cardiac Scintigraphy With Technetium-99m-Labeled Bone-Seeking Tracers for Suspected Amyloidosis: JACC Review Topic of the Week. J Am Coll Cardiol. 2020 Jun 9;75(22):2851-2862. doi: 10.1016/j.jacc.2020.04.022. PMID: 32498813.

¹²⁴I-EVUZAMITIDE (AT-01) NOVEL PAN-AMYLOID RADIOTRACER

- First-in-human study of ¹²⁴I-evuzamitide cardiac and whole-body PET/MRI
- Assess feasibility and tracer distribution in patients suspected to have or diagnosed with systemic amyloidosis

Wall JS, et al. J Am Coll Cardiol Img. 2023;16(11):1433-1448.


- 50 patients (27 ATTR, 7 AL, 16 controls)
- Cardiac amyloidosis was suspected or diagnosed in all patients prior to enrollment.
- Designed to test the performance of hybrid PET/MRI using ¹²⁴Ievuzamitide in high-risk/known amyloid patients vs controls

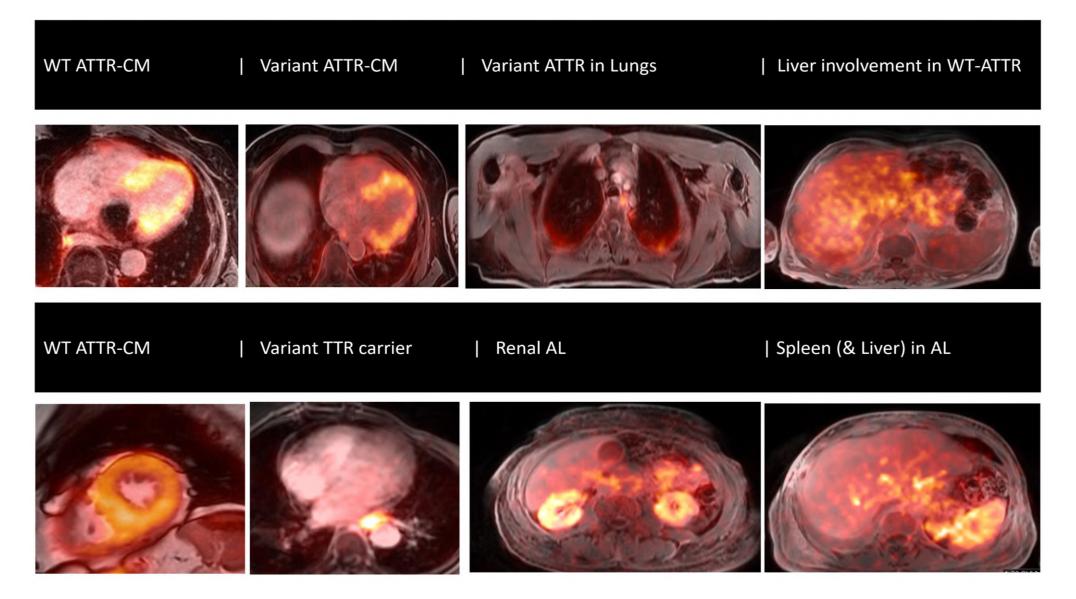
- Hybrid ¹²⁴I-evuzamitide cardiac PET/MRI → whole-body (WB) PET/MRI
- Mean administered activity 1.04±0.02 mCi (average 5-6 minutes per bed)
- All patients received potassium iodide 130 mg for 3 days, first dose at least 30 minutes prior to ¹²⁴Ievuzamitide administration

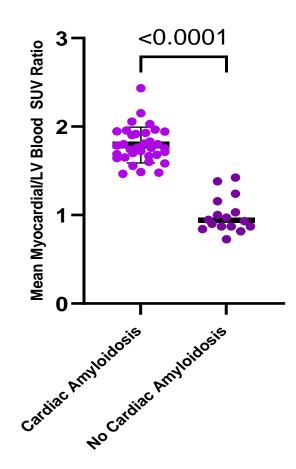
QUANTIFYING¹²⁴I-EVUZAMITIDE UPTAKE

• LV septum standardized uptake value (SUV)/mean LV blood pool SUV

• LV septum SUV – mean LA SUV

BASELINE CHARACTERISTICS

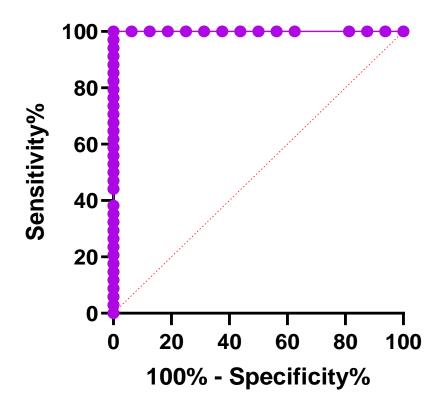

Variable	Cardiac Amyloidosis (N=34)	Controls (N=16)	p-value
Age (years)	74.7±8	66.44±9	0.002
Male sex	31 (91%)	6 (37.5%)	<0.001
Cardiac Amyloidosis			
subtype	7 (20.6%)	-	
Light chain	27 (79.4%)	-	
Transthyretin			
Controls Underlying			
Phenotype:		4 (25%)	
LVH/HCM		5 (31%)	
Extracardiac		5 (31%)	
AL amyloidosis		2 (13%)	
Transthyretin			
variant carrier			
Orthopedic			
amyloid deposit			
Systemic amyloidosis	0%	7 (43.8%)	
without cardiac involvement			
Pathogenic transthyretin	4 (11.8%)	5 (31.3%)	0.250
variant			
Left ventricular hypertrophy	33 (97%)	10 (62.5%)	0.366
(basal LV septum ≥12 mm)			


RESULTS

Variable	Cardiac Amyloidosis (N=34)	Controls (N=16)	p-value
¹²⁴ I-evuzamitide administered activity (mCi)	1.05 (0.02)	1.04 (0.01)	0.124
Mean time from ¹²⁴ I-evuzamitide to start of cardiac PET (hours)	3.15	3.05	0.571
Mean time from ¹²⁴ I-evuzamitide to start of Whole-body PET (hours)	4.00	3.85	0.405
Mean myocardial SUV	7.58 (2.12)	3.43 (0.75)	<0.001
Mean LV blood pool SUV	4.28 (1.20)	3.39 (0.63)	0.001
SUVR (myocardium over LV blood)	1.76 (1.67, 1.93)	0.94 (0.87, 1.06)	<0.001
Mean LA blood pool SUV	3.67 (0.95)	3.52 (0.85)	0.602
Mean Myocardium SUV – LA SUV	3.4 (2.58, 3.36)	0 (0, 0.55)	<0.001
¹²⁴ I-evuzamitide distribution			
Cardiac	34 (100%)	0 (0%)	
Spleen	5 (14.7%)	2 (12.5%)	
Liver	4 (11.8%)	2 (12.5%)	
Renal	3 (8.8%)	6 (37.5%)	
Lungs	4 (11.8%)	1 (6.3%)	
Orthopedic	12 (35.3%)	5 (31.3%)	

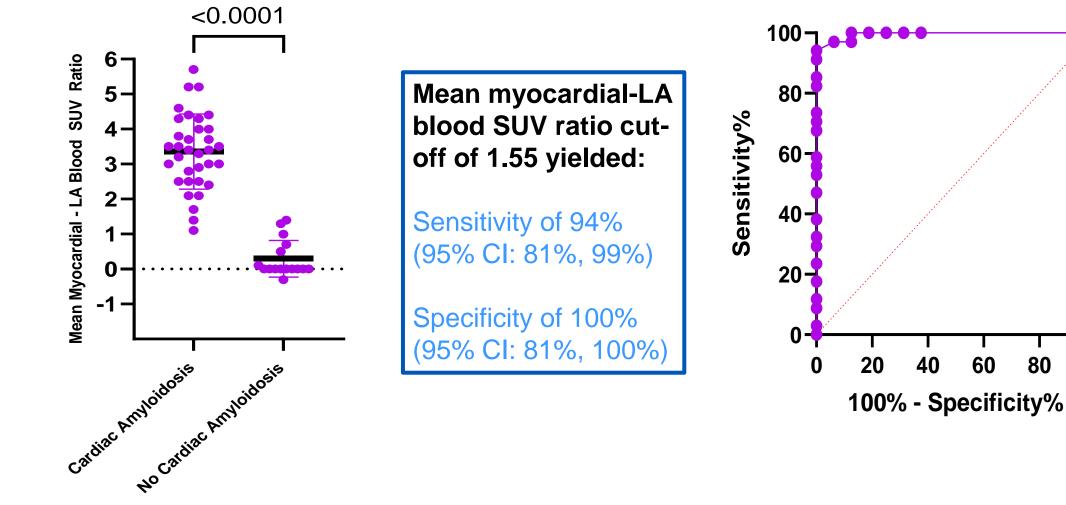
EXAMPLES OF ¹²⁴I-EVUZAMITIDE UPTAKE

DIAGNOSTIC PERFORMANCE 124I-EVUZAMITIDE UPTAKE QUANTIFICATION



Mean myocardial/LV blood SUV ratio cutoff of 1.45 yielded:

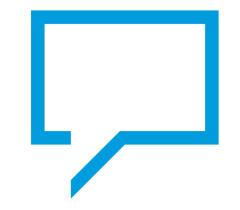
Sensitivity of 100% (95% CI: 90%, 100%)


Specificity of 100% (95% CI: 81%, 100%)

ROC (Mean Myocardial/LV Blood SUV Ratio)

DIAGNOSTIC PERFORMANCE ¹²⁴I-EVUZAMITIDE UPTAKE QUANTIFICATION

ROC (Mean Myocardial-LA Blood SUV)


80

100

CONCLUSIONS

- 1. ¹²⁴I-evuzamitide PET/MRI is feasible and provides comprehensive diagnostic evaluation and organ survey of patients suspected to have or diagnosed with systemic amyloidosis.
- In this population of patients diagnosed with or suspected to have cardiac amyloidosis, ¹²⁴I-evuzamitide PET/MRI had a 100% sensitivity and specificity for the diagnosis of cardiac amyloidosis.
- A simple measure of mean myocardial to LV blood pool SUV ratio ≥1.45 yielded a 100% sensitivity and specificity for the diagnosis of cardiac amyloidosis.
- 4. Our participants were a highly selected group of patients, and as such, an intention-to-diagnose phase III multicenter trial of ²⁴I-evuzamitide in patients suspected to have cardiac amyloidosis is needed to confirm our findings.

QUESTIONS & ANSWERS

THANK YOU FOR JOINING US IN THIS COURSE

Rochester, Minnesota

Phoenix, Arizona

Jacksonville, Florida