

XIX INTERNATIONAL SYMPOSIUM ON AMYLOIDOSIS

MAY 26-30, 2024 – ROCHESTER, MN

COURSE DIRECTORS:

Angela Dispenzieri, M.D. – Mayo Clinic Morie A. Gertz, M.D. – Mayo Clinic Martha Grogan, M.D. – Mayo Clinic Dr. Stefan Schönland, Heidelberg University Hospital, Germany, ISA President 2022-2024

SPONSORED BY THE INTERNATIONAL SOCIETY OF AMYLOIDOSIS (ISA)

EMILY MARTIN

Associate Professor The University of Tennessee Graduate School of Medicine – Knoxville, TN Amyloidosis and Cancer Theranostics Program <u>emartin@utmck.edu</u>

Unauthorized duplication, distribution or exhibition of this program is an infringement of United States and International copyright laws.

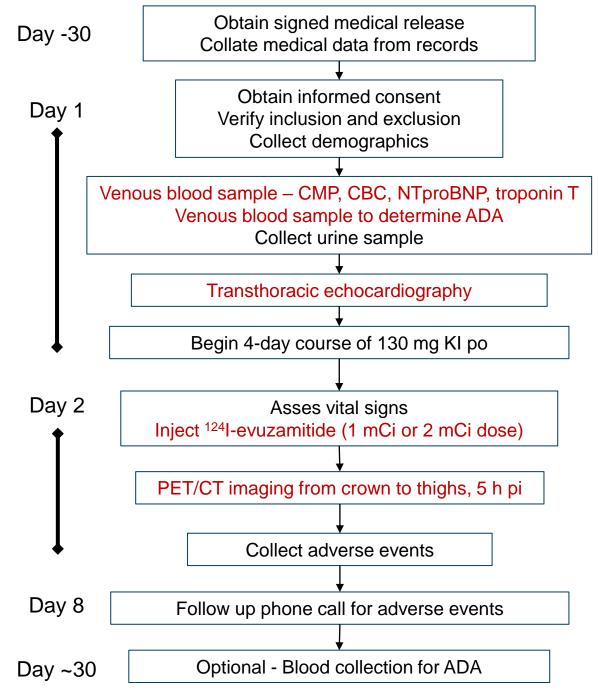
Title 17, U.S. Copyright Code

DISCLOSURE OF RELEVANT FINANCIAL RELATIONSHIP(S) WITH INDUSTRY

- Founding shareholder of Attralus Inc.
- ¹²⁴I-evuzamitide (¹²⁴I-AT-01) was provided by Attralus.
- Inventor on IP related to amyloid imaging peptides.

REFERENCES TO OFF-LABEL USAGE(S) OF PHARMACEUTICALS OR INSTRUMENTS

Nothing to disclose


CHANGES IN ORGAN-SPECIFIC AMYLOID LOAD ASSESSED BY SERIAL PET/CT IMAGING OF IODINE (¹²⁴I) EVUZAMITIDE CORRELATION WITH SERUM BIOMARKERS

This was a single center, open-label, single arm PET/CT imaging study in subjects with AL or ATTR amyloidosis who had been previously imaged with ¹²⁴I-evuzamitide (AT-01).

The primary objective was to measure visual and quantitative changes in organspecific uptake of ¹²⁴I-evuzamitide from baseline, in patients with systemic amyloidosis, using PET/CT imaging.

Uptake of radiotracer in the organs was assessed by measuring the standard uptake value ratio (SUVR) – the amount of radioactivity per unit volume scaled by the blood pool radioactivity. Correlations with serum biomarkers were assessed.

REPEAT IMAGING PROTOCOL

POPULATION CHARACTERISTICS

Characteristics	Patient (<i>N</i> = 19)		
Age (years)			
Median (IQR)	72 (63, 76)		
Gender			
Male	11 (58%)		
Ethnicity			
Not Hispanic or Latino	19 (100%		
Race			
Black or African American	1 (5%)		
White	18 (95%)		
Time Since SA Diagnosis (years)			
Median (IQR)	7 (6, 9) 🔶		
Time Since baseline imaging in AMY1001 study			
Mean ±SD (years)	2.9 ± 0.9 ←		
Amyloid Type			
AL	9 (47%) 🔶		
ATTR; Mutation type	10 (53%) ←		
L58H	3 (16%)		
T60A	5 (26%) ←		
V30M and V122I	1 (5%)		
Wild type	1 (5%) 🔶		
Amyloid therapy at time of imaging			
AL (% of AL patients; <i>n</i> =9)	2 (22%) ←		
ATTR (% of ATTR patients; <i>n</i> =10)	10 (100%) ←		
Stabilizer only	1 (10%)		
Silencer only	5 (50%)		
Stabilizer and silencer	4 (40%) 🔶		

Clinical Characteristic	AL (<i>n</i> =9) ¹	ATTR (<i>n</i> -=10)	All (<i>N</i> =19)			
IVS thickness (cm)	1.5±0.3	1.6±0.3	1.6±0.3 🔶			
LV wall thickness (cm)	1.3±0.4	1.4±0.5	1.3±0.4			
GLS (%)	-14.5±4.0	-13.2±4.9	-13.8±4.4 🔶			
NTproBNP (pg/mL)	525 (160.5,954) ←	387 (219,1591) (<i>n</i> =9)	456 (164.8,1239) <i>n</i> =18)			
Troponin T (ng/L)	17.5 (11.5,30.8) (<i>n</i> =8) 28.5 (15.8,43.5) (<i>n</i> =8)		23.5 (14.3,32.5) (<i>n</i> =16)			
eGFR (mL/min/1.73)	71.0±17.0	74.5±18.2	72.8±17.3			
Cre (mg/dL)	1.1±0.2	1.0±0.4	1.0±0.3			
BUN (mg/mL)	21.1±8.4	19.7±6.0	20.4±7.0			
Free κ LC (mg/L)	26.4 (17.3,44.1)	15.5 (12.3,24.1)	20.9 (13.2,31.4)			
Free λ LC (mg/L)	13.3 (10.8,19.8)	11.4 (8.3,13.8)	11.5 (10.5,15.2)			
κ/λ ratio	1.9 (1.0,2.8)	1.6 (1.3,1.9)	1.7 (1.2,2.2)			

At repeat imaging:

Six (6/9) AL patients had elevated FLC.

Five (5/9) AL patients had elevated κ/λ ratios

Four (4/10) ATTR patients had elevated FLC (κ).

VISUAL EVALUATION OF IMAGES

livor

Heart

Green

Remained positive

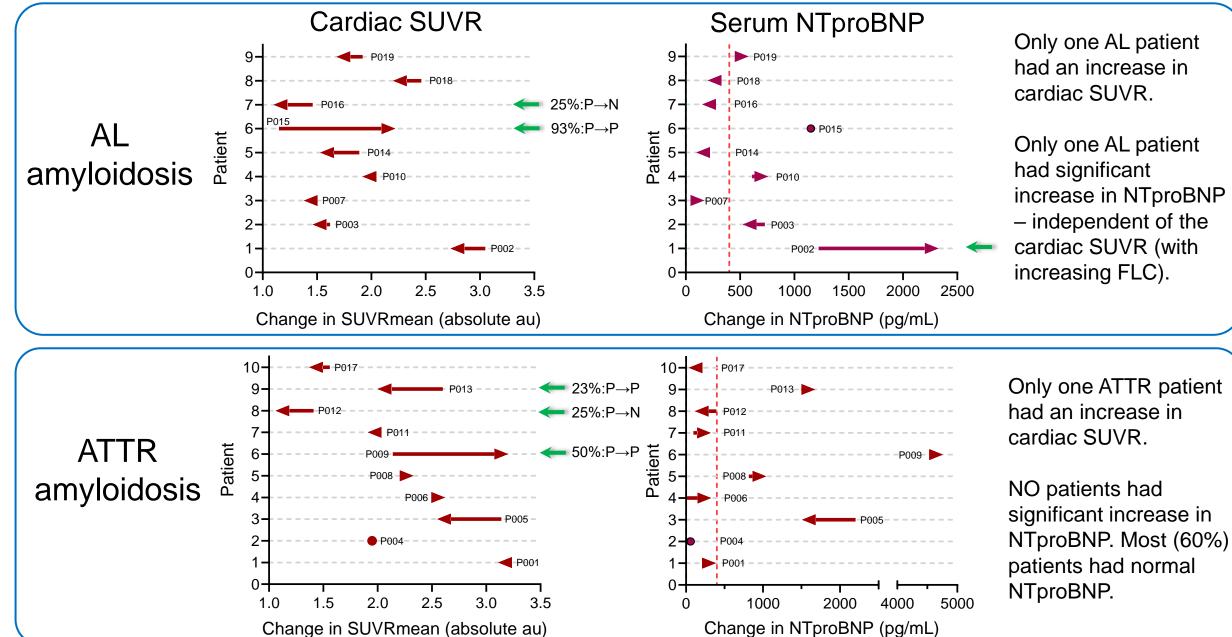
Grey

Kidnov

Remained negative

		He	Heart		/er	Spieen		Spieen Klaney		кіапеу		Remained negative
Amyloid	Patient	Baseline	Repeat	Baseline	Repeat	Baseline	Repeat	Baseline	Repeat	Orange		
ATTR	P001	Y	Y	N	N	N	N	N	N	Became negative		
AL	P002	Y	Y	Y	N	Y	Y	N	N	Red		
AL	P003	Y	Y	Y	Y	Y	Y	Y	Y	Became positive		
ATTR	P004	Y	Y	N	N	N	N	N	Y	—		
ATTR	P005	Y	Y	N	N	N	N	N	N			
ATTR	P006	Y	Y	Ν	N	N	N	N	N			
AL	P007	Y	Y	Ν	N	N	N	N	Y			
ATTR	P008	Y	Y	Y	N	Y	N	Y	Y			
ATTR	P009	Y	Y	N	N	N	N	N	N			
AL	P010	Y	Y	Ν	N	N	N	Y	Y			
ATTR	P011	Y	Y	N	N	N	N	N	N			
ATTR	P012	Y	N	Y	N	Y	N	Y	Y			
ATTR	P013	Y	Y	Y	N	Y	N	Y	N			
AL	P014	Y	Y	Y	N	N	N	Y	Y			
AL	P015	Y	Y	N	N	N	N	N	Y	—		
AL	P016	Y	N	Y	N	Y	N	Y	Y			
ATTR	P017	Y	Y	N	N	Y	N	N	Y	Only one patient		
AL	P018	Y	Y	Y	Y	Y	Y	Y	Y	with increase in		
AL	P019	N	Y	N	Y	Y	Y	Y	Y	visual cardiac		

Snloon


uptake

SUMMARY – VISUAL ASSESSMENT OF PET/CT

In the all-subject population (*N* = 19):

- 14 patients (n=14, 74%) had no increase in ¹²⁴I-evuzamitide visually positive organs among the heart, liver, spleen, or kidney
- Two patients (*n*=2, 11%) with positive cardiac amyloid at baseline were deemed visually negative at repeat imaging.
 - P012 (ATTR) vutrisiran: NTproBNP 395 \rightarrow 186 pg/mL: SUVR 1.41 \rightarrow 1.06
 - P016 (ALк) No Tx: кFLC 77→54 mg/L: NTproBNP 199→152 pg/mL: SUVR 1.46→1.10
- Only one patient (n=1, 5%), with AL amyloidosis, had positive uptake in the heart that was deemed negative at baseline.
- Five patients (*n*=5, 26%) had a change from negative to positive organ uptake, almost exclusively (4/5; 80%) associated with renal uptake.

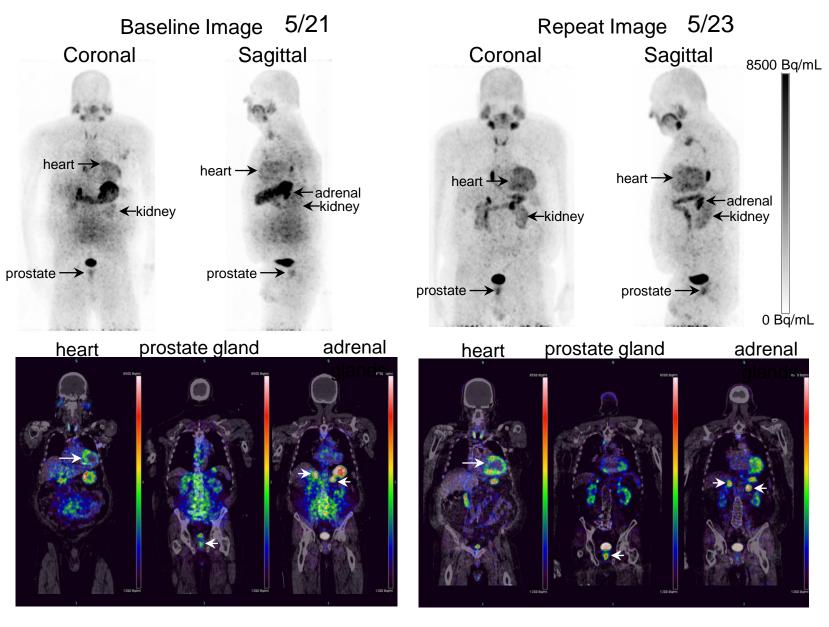
CARDIAC UPTAKE WAS STABLE IN THIS POPULATION

SUMMARY – QUANTITATIVE EVALUATION OF IMAGES

In the AL patient population (n = 9):

- 1/9 (11%) Reduced cardiac SUVRmean to near normal.
- 7/9 (78%) Stable cardiac SUVRmean.
- 1/9 (11%) 93% increase in cardiac SUVRmean (no change in NTproBNP).
- 8/9 (89%) Stable NTproBNP with 1/9 (11%) increasing NTproBNP.

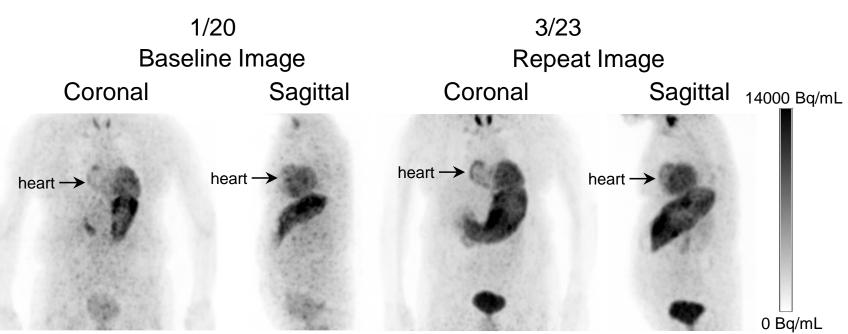
In the ATTR patient population (*n* = 10):

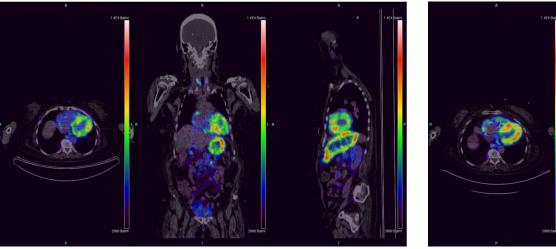

- 2/10 (20%) Reduced cardiac SUVRmean (>20% decrease).
- 7/10 (70%) Stable cardiac SUVRmean.
- 1/10 (10%) 49.5% increase in cardiac SUVRmean (no change in NTproBNP).
- 9/10 (90%) Stable NTproBNP levels with 1/10 (10%) decreasing NTproBNP.

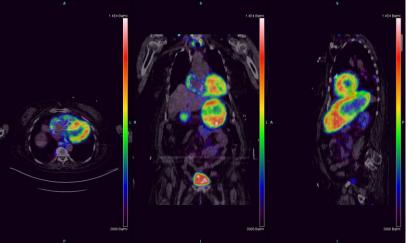
CASE STUDIES

CARDIAC AMYLOID PROGRESSION - AL

Case 1 [RPT P015]


- Male with AL amyloidosis
- Daratumumab/Lenalidomide
- Baseline dFLC = 1.8
- Repeat dFLC = 4.1
- Repeat free $\lambda = 10.5 \text{ mg/L}$
- Baseline SUVR = 1.15
- Repeat SUVR = 2.22
- NTproBNP 1153→1150 pg/mL




CARDIAC AMYLOID PROGRESSION - ATTR

Case 2 [RPT P009]

- Female with ATTR amyloidosis
- Patisiran + Tafamidis
- Baseline SUVR = 2.14
- Repeat SUVR = 3.20
- NTproBNP 4586→4761 pg/mL

SPLENIC AMYLOID REGRESSION - AL

Coronal

7/20

Baseline Image

Sagittal

Case 3 [RPT P002]

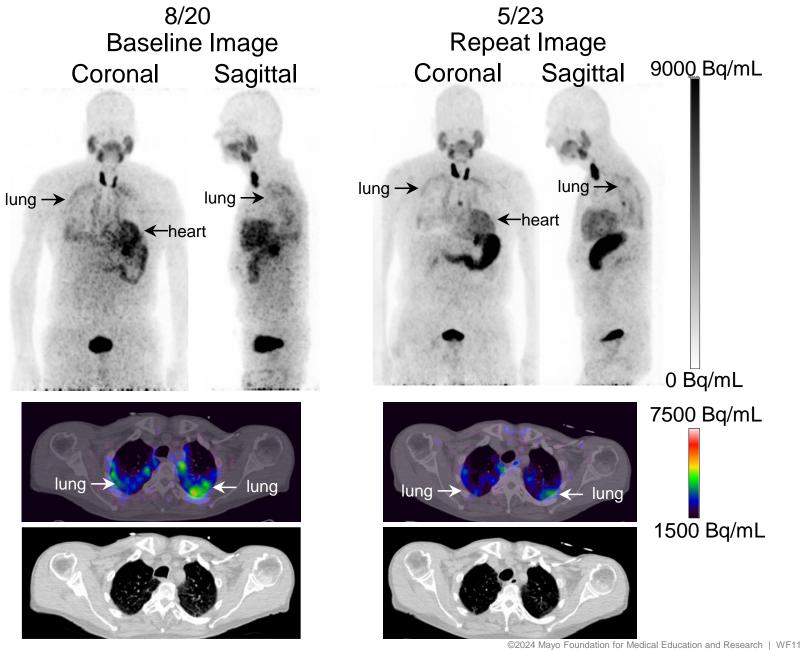
- Male with AL amyloidosis
- No therapy
- Baseline dFLC = 14.3
- Repeat dFLC = 15.8
- Repeat free $\kappa = 26.4$ mg/L
 - Increased 6 mg/L
- Baseline Spleen SUVR = 13.7
- Repeat Spleen SUVR = 3.5
- heart heart heart heart heart heart heart spleen spleen spleen
- Decreased splenic SUVR (75%) and total organ CT volume -20.5%

13000 Bq/mL

0 Bq/mL

12/22

Repeat Image

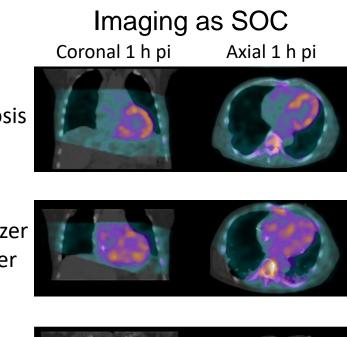

Sagittal

Coronal

CARDIAC AMYLOID REGRESSION – ATTR

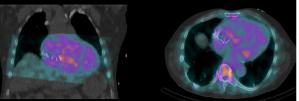

Case 4 [RPT P013]

- Male with ATTR amyloidosis
- Tafamidis + Vutrisiran
- Baseline SUVR = 2.60
- Repeat SUVR = 2.00
- Decrease in lung activity
- NTproBNP 1494 \rightarrow 1675 pg/mL



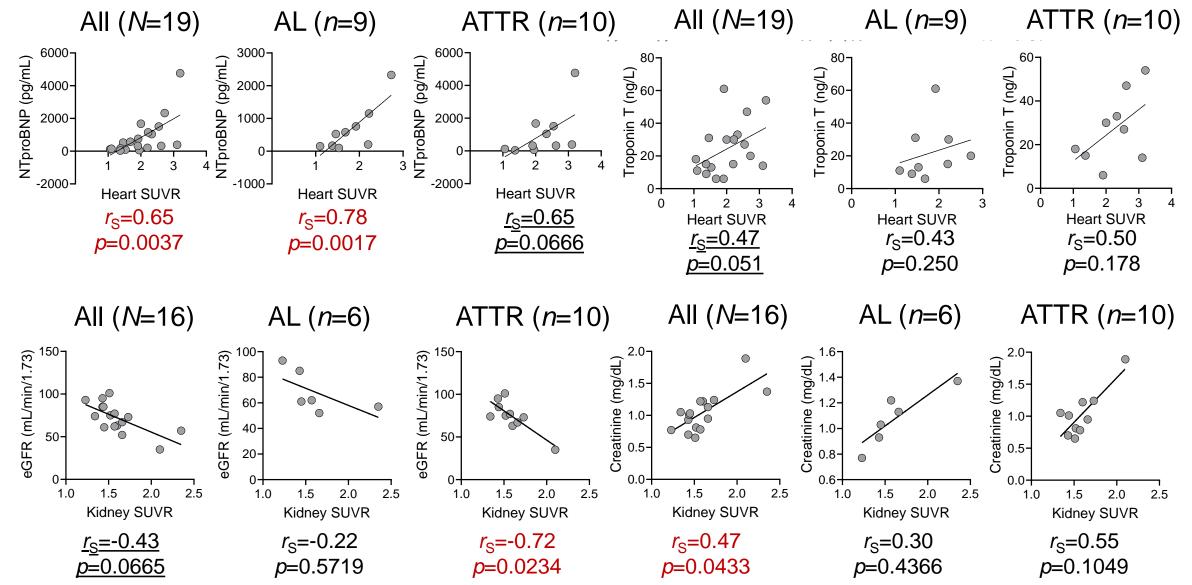
CARDIAC AMYLOID REGRESSION – CONFIRMED CLINICALLY

Baseline PET/CT



Repeat PET/CT ^{99m}Tc-PYP uptake Diagnosis 3 y stabilizer 1 y silencer

^{99m}Tc-PYP

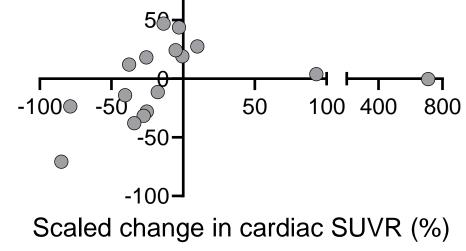

3.5 y stabilizer 1.5 y silencer

Data kindly provided by Dr. Brett Sperry Sperry et al. Cardiovascular Imaging. 2023;16, 514

8/20

¹²⁴I-EVUZAMITIDE UPTAKE CORRELATED WITH CERTAIN SERUM BIOMARKERS

©2024 Mayo Foundation for Medical Education and Research | WF1116865-19


THE CHANGE IN SERUM NTproBNP BETWEEN IMAGING CORRELATES WITH CHANGE IN CARDIAC UPTAKE OF ¹²⁴I-EVUZAMITIDE

Cha

		_	300-				
Parameter	Spearman <i>rho</i>	Spearman <i>p</i>	(%)				
All Patients (N=19)			L A	₂₀₀ L			
ΔCardiac SUVR change (%) vs ΔNTproBNP change (%)	0.57	0.0112*	TproBl	- ¹⁰⁰ T 50 T			
ΔScaled cardiac SUVR change (%) vs ΔNTproBNP change (%)	0.62	0.0050*		-100 -50 -	50	— 4 1 1 00 400	رھ۔ 80
			<u> </u>				

No correlation between changes in serum NTproBNP and change in cardiac uptake of ¹²⁴Ievuzamitide with:

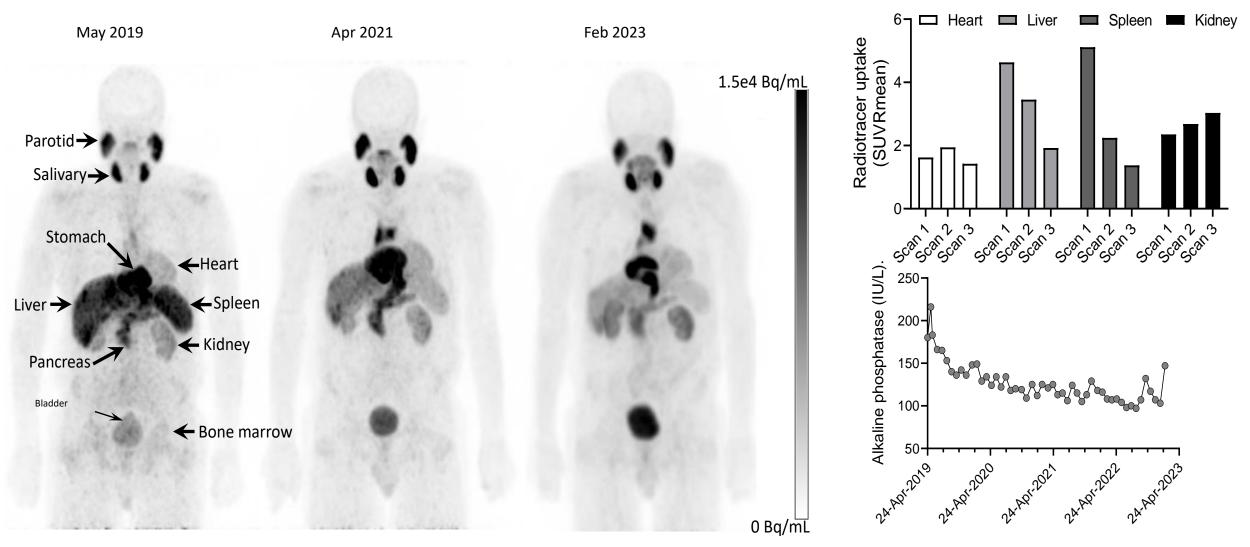
AL group (*n*=9) or ATTR group (*n*=10)

SUMMARY

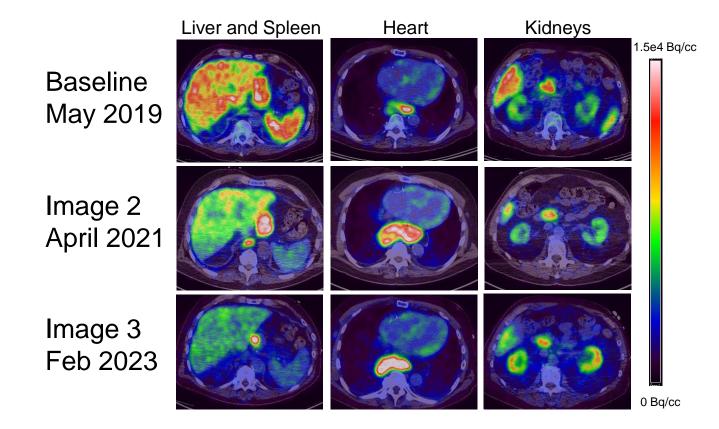
- Findings:
 - Changes in the SUVR were consistent with a population with generally stable amyloid, with only two patients (n=1 AL and n=1 ATTR) exhibiting more than a 1-point change (increase) in SUVR.
 - Two patients with focal tracer uptake at baseline became negative by visual and quantitative assessment.
 - The change in cardiac SUVR from baseline to repeat imaging correlated significantly with the change in serum NTproBNP in the whole population.
 - Uptake of ¹²⁴I-evuzamitide in organs variably correlated with serum biomarkers, although more work is needed to assess the relevance and underlying physiological changes responsible.
- Limitations of the Study:
 - Population could only be recruited from a limited pool of patients who had been previously imaged with ¹²⁴I-evuzamitide.
 - The returning population was clinically stable: 78% of patients with AL amyloidosis were not on therapy and 100% of ATTR patients were on a stabilizer, silencer or both (40%) – difficult to assess consistent changes in amyloid load in this population.

Amyloidosis and Cancer Theranostics Program Steve Kennel Jonathan Wall Manasi Balachandran Joseph Jackson Trevor J. Hancock Steve Foster **Angela Williams** Tina Richey Sallie Macy **Craig Wooliver** Alan Stuckey Eric Heidel Bryan Whittle Anne Kassira Renju Raj

Funding and Support from:



QUESTIONS & ANSWERS



MONITORING CHANGES IN AMYLOID UPTAKE OF ¹²⁴I-EVUZAMITIDE BY PET/CT IMAGING

Patient with AL amyloid diagnosed by liver biopsy. Dara therapy for 5 years with good hematologic response.

MONITORING CHANGES IN AMYLOID UPTAKE OF ¹²⁴I-EVUZAMITIDE BY PET/CT IMAGING

Decreases in ¹²⁴I-evuzamitide uptake could be visualized in transaxial PET/CT images.

Radioactivity in the heart appeared to be stable but increasing in the renal cortex.