## BRIGHAM AND BWH **Mass General Brigham** WOMEN'S HOSPITAL Automatic quantification of AL and ATTR amyloidosis disease burden using <sup>124</sup>I-evuzamitide, a novel radiotracer

Zhiyang A. Wei<sup>1</sup>, Olivier Clerc<sup>1,2</sup>, Matthew Robertson<sup>1</sup>, Sudhir Bhimaniya<sup>1</sup>, Sarah Cuddy<sup>2</sup>, Amy J. Weisman<sup>3</sup>, Spencer Guthrie<sup>4</sup>, Rodney Falk<sup>2</sup>, Sharmila Dorbala<sup>1,2</sup> <sup>1</sup>Division of Nuclear Medicine and Molecular Imaging, Department of Radiology; <sup>2</sup>Amyloidosis Program, Brigham and Women's Hospital, Boston, USA; <sup>3</sup>AIQ Solutions, Madison, WI, USA; <sup>4</sup>Attralus Inc., San Francisco, CA, USA.

# Background

Amyloidosis is a heterogeneous disease that results from the abnormal deposition of beta-sheet fibrillar protein aggregates in various tissues. The two main forms of amyloidosis with significant cardiac involvement are transthyretin amyloidosis (ATTR) and immunoglobulin-light-chain related amyloidosis (AL). While recent therapeutic advancements have improved outcomes in cardiac amyloidosis, characterization of AL and ATTR amyloid deposits in the heart and systemic organs remains challenging. This study evaluates the novel PET radiotracer <sup>124</sup>I-evuzamitide for quantifying AL and ATTR amyloid burden in the heart and systemic organs.

# Method

The study included 24 patients (12 AL, 12 ATTR) and 16 healthy controls who underwent <sup>124</sup>I-evuzamitide PET/CT at 5 hours post-injection (median 0.98 mCi). The liver, spleen, kidneys, heart, pancreas, and adrenal glands were automatically segmented using a trained deep learning algorithm (AIQ Solutions). Mean standardized uptake value (SUV) in each organ was normalized by the average aortic arch uptake to obtain ratio SUVR measurements. Abnormal uptake was defined as mean+1.96SD in the controls.

| Baseline Characteristics of Study Participants |               |  |  |  |  |
|------------------------------------------------|---------------|--|--|--|--|
| Characteristic                                 | Data          |  |  |  |  |
| Age (y)                                        | 69.9 +/- 8    |  |  |  |  |
| Male/Female                                    | 33/7          |  |  |  |  |
| ATTR-CA                                        | 12            |  |  |  |  |
| AL-CA                                          | 12            |  |  |  |  |
| Control                                        | 16            |  |  |  |  |
| Height (m)                                     | 1.74 +/- 0.10 |  |  |  |  |
| Weight (kg)                                    | 81.7 +/- 13.4 |  |  |  |  |
| eGFR (mL/min/1.73<br>m²)                       | 67.3 +/- 24.2 |  |  |  |  |

Table 1



Figure 1: Example organ segmentations produced by the deep learning algorithm on a randomly selected patient.



<sup>124</sup>I-evuzamitide demonstrated excellent sensitivity in detecting cardiac amyloidosis, identifying 24/24 patients. It also identified abnormal uptake in the liver (3/12 AL and 1/12 ATTR), spleen (5/12 AL), kidneys (4/12 AL), pancreas (7/12 AL), and adrenal glands (6/12 AL and 1/12 ATTR) (Table 2). Compared to the International Society of Amyloidosis criteria for organ involvement in AL, <sup>124</sup>I-evuzamitide identified more patients with hepatic involvement and fewer patients with renal involvement (2/5, 40%). Notably, it detected abnormal renal uptake in two patients without biochemical signs of renal involvement.

### Heat map of SUVR by organ, with corresponding 24-hr urine protein and alkaline phosphatase for AL patients

| Patient<br>ID                                                                                                      | Diagnosis | Liver | Spleen | Kidneys | Pancreas | Heart | Adrenals | 24-hr urine<br>protein (g), ><br>0.5 g<br>abnormal | Alkaline<br>Phosphatase:ULN,<br>ratio > 1.5 abnormal |
|--------------------------------------------------------------------------------------------------------------------|-----------|-------|--------|---------|----------|-------|----------|----------------------------------------------------|------------------------------------------------------|
| Cut-off values                                                                                                     |           | 1.31  | 1.21   | 1.88    | 1.40     | 1.19  | 1.35     |                                                    |                                                      |
| 02                                                                                                                 | AL        | 0.94  | 1.04   | 1.43    | 1.36     | 1.93  | 0.87     | 0.08                                               | 0.76                                                 |
| 03                                                                                                                 | AL        | 1.14  | 1.15   | 2.06    | 1.71     | 1.94  | 1.51     | 1.86                                               | 0.46                                                 |
| 05                                                                                                                 | AL        | 1.04  | 1.64   | 1.58    | 0.92     | 2.29  | 0.95     | 0.10                                               | 0.81                                                 |
| 07                                                                                                                 | AL        | 1.65  | 16.24  | 1.96    | 2.71     | 1.79  | 4.41     | 0.24                                               | 0.96                                                 |
| 08                                                                                                                 | AL        | 0.88  | 0.63   | 1.29    | 1.20     | 1.50  | 1.33     | 0.17                                               | 0.47                                                 |
| 09                                                                                                                 | AL        | 0.95  | 1.02   | 2.14    | 1.58     | 1.39  | 0.90     | 0.14                                               | 0.75                                                 |
| 14                                                                                                                 | AL        | 1.25  | 1.70   | 1.67    | 2.06     | 2.32  | 1.77     | 3.08                                               | 0.48                                                 |
| 15                                                                                                                 | AL        | 1.01  | 1.00   | 1.17    | 1.20     | 1.78  | 1.35     | 0.22                                               | 0.87                                                 |
| 17                                                                                                                 | AL        | 1.08  | 0.87   | 1.76    | 1.19     | 1.60  | 1.06     | 0.55                                               | 0.55                                                 |
| 44                                                                                                                 | AL        | 10.52 | 3.82   | 1.88    | 2.76     | 3.14  | 2.63     | 0.92                                               | 1.52                                                 |
| 46                                                                                                                 | AL        | 1.04  | 1.19   | 1.33    | 1.43     | 1.40  | 1.30     | 0.06                                               | 0.88                                                 |
| 48                                                                                                                 | AL        | 1.39  | 21.10  | 2.36    | 2.01     | 1.33  | 1.53     | 2.48                                               | 1.09                                                 |
| 01                                                                                                                 | ATTR      | 6.90  | 0.79   | 1.56    | 0.85     | 1.57  | 1.41     |                                                    |                                                      |
| 04                                                                                                                 | ATTR      | 1.04  | 0.92   | 1.44    | 1.40     | 2.02  | 1.06     |                                                    |                                                      |
| 10                                                                                                                 | ATTR      | 0.85  | 0.79   | 1.19    | 1.03     | 1.63  | 0.78     |                                                    |                                                      |
| 11                                                                                                                 | ATTR      | 1.12  | 0.86   | 1.40    | 0.83     | 1.92  | 0.95     |                                                    |                                                      |
| 12                                                                                                                 | ATTR      | 1.01  | 0.88   | 1.11    | 0.90     | 1.52  | 0.92     |                                                    |                                                      |
| 13                                                                                                                 | ATTR      | 0.91  | 0.87   | 1.28    | 1.16     | 1.84  | 0.83     |                                                    |                                                      |
| 16                                                                                                                 | ATTR      | 0.93  | 0.92   | 1.04    | 1.04     | 1.58  | 1.06     |                                                    |                                                      |
| 20                                                                                                                 | ATTR      | 1.21  | 1.05   | 1.62    | 1.01     | 1.42  | 1.09     |                                                    |                                                      |
| 25                                                                                                                 | ATTR      | 1.28  | 0.90   | 1.33    | 1.03     | 1.72  | 1.04     |                                                    |                                                      |
| 32                                                                                                                 | ATTR      | 0.76  | 0.85   | 1.21    | 0.73     | 1.58  | 0.73     |                                                    |                                                      |
| 41                                                                                                                 | ATTR      | 0.93  | 0.74   | 1.32    | 0.78     | 1.48  | 0.79     |                                                    |                                                      |
| 45                                                                                                                 | ATTR      | 0.80  | 0.70   | 1.12    | 0.75     | 1.61  | 0.67     |                                                    |                                                      |
| Ded celle dans to values greater than argan an acific out official control of many 1 0000 in backtov controls, and |           |       |        |         |          |       |          |                                                    |                                                      |

Red cells denote values greater than organ-specific cut-off values defined as mean + 1.965D in healthy controls, and green cells denote values less than organ-specific cut-off values. SUVR: standardized uptake value ratio, defined as mean SUV for each organ normalized by the average uptake in the aortic arch. ULN: upper limit of normal. To determine amyloid involvement, cut-off values of each quantitative metric in each organ were defined as the 95<sup>th</sup> percentile of the corresponding value in the healthy controls (mean + 1.96SD). The number of patients with values above this normal range was quantified for each metric and organ.

## Result

#### Table 2



Figure 2: High <sup>124</sup>I-evuzamitide uptake in the spleen and liver in two patients with AL-CA



Figure 3: High <sup>124</sup>I-evuzamitide uptake in the adrenal glands and pancreas in a patient with AL-CA



<sup>124</sup>I-evuzamitide PET/CT is highly sensitive for detecting amyloid deposits in the heart and systemic organs, providing a novel noninvasive approach for characterizing cardiac and systemic organ amyloid burden. The novel findings of abnormal pancreatic and adrenal uptake indicate <sup>124</sup>I-evuzamitide's potential for early amyloidosis detection in these organs.

We are extremely grateful to the study participants for their time and effort. This work was supported by Attralus and the NIH (K24 HL157648, Dorbala).

| 1. | Ehman EC et al.     |
|----|---------------------|
|    | Sep;60(9):1234-     |
| 2. | Kennel SJ et al.    |
|    | 2016 Aug;18(4       |
| 3. | Martin EB, et al.   |
|    | Types of System     |
| 4. | Wall JS, et al. Fir |
|    | Systemic Amylo      |
| 5. | Amy J Weisman       |
|    | manufacturer 2      |
|    |                     |



# Conclusion

## Acknowledgements

## References

Early Detection of Multiorgan Light-Chain Amyloidosis by Whole-Body <sup>18</sup>F-Florbetapir PET/CT. J Nucl Med. 2019 . Tc-99m Radiolabeled Peptide p5 + 14 is an Effective Probe for SPECT Imaging of Systemic Amyloidosis. Mol Imaging Biol.

Clinical Confirmation of Pan-Amyloid Reactivity of Radioiodinated Peptide <sup>124</sup>I-p5+14 (AT-01) in Patients with Diverse nic Amyloidosis Demonstrated by PET/CT Imaging. Pharmaceuticals. 2023; 16(4):629. rst in Human Evaluation and Dosimetry Calculations for Peptide <sup>124</sup>I-p5+14-a Novel Radiotracer for the Detection of idosis Using PET/CT Imaging. *Mol Imaging Biol*. 2022 Jun;24(3):479-488.

n et al. Multi-organ segmentation of CT via convolutional neural network: impact of training setting and scanner 23 Biomed. Phys. Eng. Express 9 065021